ENCI707: Engineering Demand and Policy Analysis
\[Pr(d) = \frac{\exp(V_d)}{\sum_{d' \in D} \exp(V_d')} \text{, } Pr(m|d) = \frac{\exp(V_{m|d})}{\sum_{m' \in M} \exp(V_{m'|d})}\] - Joint probability of choice \[Pr(md) = \frac{\exp(V_d)}{\sum_{d' \in D} \exp(V_d') \sum_{m' \in M} \exp(V_{m'|d})}\] \[Pr(md) = \frac{\exp(V_d + V_{m|d})}{\sum_{d' \in D} \exp(V_{d'})} \frac{\exp(V_{m|d})}{\sum_{m' \in M} \exp(V_{m'|d})}\]
\[Prβ‘_{ππ} = \frac{\exp(π_π+π_{π|π})}{\sum_{π'\in π·}\sum_{π'\in π} \expβ‘(π_{π'} +π_{π'|π'})}\] \[Prβ‘_{ππ}=\frac{\exp(π_π+π_{π|π})}{\sum_{π'\in π·} \expβ‘(π_{π'}) \sum_{m'\in M}\exp(π_{π'|π'})}\] \[Prβ‘_{ππ}=\frac{\exp(π_π+π_{π|π})}{\sum_{π'\in π·} \expβ‘(π_{π'} + \ln(\sum_{m'\in M}\exp(π_{π'|π'})}\]
\[U_{m|d} = V_{m|d} + \epsilon_{m|d} \text{ (Lower-level conditional utility function)}\] \[\begin{align}
U_{d} = V_d + (V_{m|d} + \epsilon_{m|d}) + \epsilon_d = \widetilde{V_d} + \epsilon_d & \text{ (Upper-level unconditional} \\
& \text{utility function for a pair of d-m)}
\end{align}\] \[\begin{align}
\widetilde{V_d} = V_d + (V_{m|d} + \epsilon_{m|d}) & \text{ (Upper-level compounded} \\
& \text{systematic utility for a pair of d-m)}
\end{align}\] \[\epsilon_d \sim\text{IID EV Type I with scale, }\mu_1\text{; }Var(\epsilon_d)=\pi^2/6\mu^2_d\] \[\epsilon_{m|d} \sim\text{IID EV Type I with scale, }\mu_2\text{; }Var(\epsilon_{m|d})=\pi^2/6\mu^2_m\]
\[Pr(2|R) = \frac{\exp(V_{2|R}/\phi)}{\exp(V_{2|R}/\phi)+\exp(V_{3|R}/\phi)} \text{; }Pr(3|R) = \frac{\exp(V_{3|R}/\phi)}{\exp(V_{2|R}/\phi)+\exp(V_{3|R}/\phi)}\] \[V_{2|R}=V_{3|R}=-t \therefore Pr(2|R)=Pr(3|R)=0.5\]
So, the inclusive value of lower-level choice: \[I_R = \phi \ln(\exp(-\frac{t}{\phi})+\exp(-\frac{t}{\phi})) = -t + \phi ln(2)\]
Upper-level utility (considering vr =0): \[V_R = v_r + I_R = -t + \phi \ln(2)\]
Probability of choosing Route 1: \[Pr(1) = \frac{\exp(-t)}{\exp(-t) + \exp(-t + \phi \ln(2))} = \frac{1}{1 + 2^{\phi}}\]
\[\text{For } \phi=0 \text{; }Pr(1)=\frac{1}{1+2^{\phi}} = 1/2\] \[\text{For } \phi=1 \text{; }Pr(1)=\frac{1}{1+2^{\phi}} = 1/3\] \[\text{For } 0<\phi<1 \text{; }Pr(1)=\frac{1}{1+2^{\phi}} < 1/2\]
Variance-Covariance Matrix of Utility Functions (assuming unit scale) \[\frac{\pi^2}{6} \begin{bmatrix} 1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & 1 \end{bmatrix}\text{; }Pr(j) = \frac{\exp(V_j)}{\sum_{k=1}^7 \exp(V_k)}\]
\[\text{TWA nest: } \rho_T = 1 - (1/\mu_T)^2 \text{; P&R nest: } \rho_P = 1 - (1/\mu_P)^2 \text{; NMT nest: } \rho_N = 1-(1/\mu_N)^2\]
\[\begin{align} \begin{array}{lcl} \text{Station location } & Pr(s|41) = \frac{\exp(\mu_{SLT} V_S)}{\sum_{k=1}^S \exp(\mu_{SLT} V_k)} & V_{1|4}=\frac{1}{\mu_{SLT}} \ln \left(\sum_{k=1}^S \exp(\mu_{SLT} V_k)\right)\\ \text{choice for P&R } & Pr(s|42) = \frac{\exp(\mu_{SGP} V_S)}{\sum_{k=1}^S \exp(\mu_{SCT} V_k)} & V_{1|4}=\frac{1}{\mu_{SCT}} \ln \left(\sum_{k=1}^S \exp(\mu_{SCT} V_k)\right)\\ \text{Choice of LT } & Pr(1|4) = \frac{\exp(\mu_{P} V_{1|4})}{\sum_{k=1}^2 \exp(\mu_{P} V_{k|4})} & V_{4}=\frac{1}{\mu_{P}} \ln \left(\sum_{k=1}^2 \exp(\mu_{P} V_{k|4})\right)\\ \text{/CTrain for P&R } & Pr(2|4) = \frac{\exp(\mu_{P} V_{2|4})}{\sum_{k=1}^2 \exp(\mu_{P} V_{k|4})} & \\ \text{Choice of LT } & Pr(1|3) = \frac{\exp(\mu_{T} V_{1|3})}{\sum_{k=1}^2 \exp(\mu_{T} V_{k|3})} & V_3=\frac{1}{\mu_{T}} \ln \left(\sum_{k=1}^2 \exp(\mu_{T} V_{k|3})\right)\\ \text{/CTrain for walk access } & Pr(2|3) = \frac{\exp(\mu_{T} V_{2|3})}{\sum_{k=1}^2 \exp(\mu_{T} V_{k|3})} & \\ \end{array} \end{align}\]
\[\text{Main mode choice } Pr(j) = \frac{\exp(V_j)}{\sum_{k=1}^5 \exp(V_k)}\]
\[\text{P&R nest: } \rho_P = 1-(1/\mu_P)^2\] Homoskedastic error variance \[\sigma^2 = \pi^2/6\] \[\mu_T>1 \text{; } \mu_{SLT} > \mu_P\] \[\mu_{SCT} > \mu_P \text{; } \mu_P > 1\]
\[\begin{align} \omega_{LT} = & \begin{bmatrix} \sigma^2 & \cdots & \rho_{SLT}\omega^2 \\ \vdots & \ddots & \vdots \\ \rho_{SLT}\sigma^2 & \cdots & \sigma^2 \\ \end{bmatrix} \\ \end{align}\] \[\rho_{SLT} = 1-(\mu_P/\mu_{SLT})^2\]
\[\begin{align} \omega_{CT} = & \begin{bmatrix} \sigma^2 & \cdots & \rho_{SCT}\omega^2 \\ \vdots & \ddots & \vdots \\ \rho_{SCT}\sigma^2 & \cdots & \sigma^2 \\ \end{bmatrix} \\ \end{align}\] \[\rho_{SCT} = 1-(\mu_P/\mu_{SCT})^2\]
\[Pr(j|C_i) = \int_{\epsilon_j=-\infty}^{+\infty}\left(\int_{\epsilon_1=-\infty}^{(V_j-V_1+\epsilon_j)} \cdots \int_{\epsilon_k=-\infty}^{(V_j-V_k+\epsilon_j)} f(\epsilon_j,\epsilon_k)d \epsilon_1 \cdots d \epsilon_k \right)d\epsilon_j\]
Equivalently \[Pr(j|C_i) = \int_{\epsilon_j=-\infty}^{+\infty} F\left((V_j-V_1+\epsilon_j) \cdots \epsilon_j \cdots (V_j - V_k + \epsilon_j) \right) d \epsilon_j\]
Joint CDF of random utilities \(F(\epsilon_1 \cdots \epsilon_j \cdots \epsilon_k)\)
Partial derivative of joint CDF, \(F(\cdots)\) with respect to \(\epsilon_j\) \[F_j(\cdots) = \partial F(\cdots)/\partial \epsilon_j\]
McFadden (1978). Modelling the Choice of Residential Location,β in Spatial Interaction Theory and Planning Models, ed. by Anders Karlqvist, et al. Amsterdam: North-Holland Publishing Company, pp. 75-96
\[Pr(j|C_i) = \int_{\epsilon_j=-\infty}^{+\infty} F\left((V_j-V_1+\epsilon_j) \cdots \epsilon_j \cdots (V_j - V_k + \epsilon_j) \right) d \epsilon_j\] - Using GEV generating function \[F(y_1, \cdots, y_j, \cdots, y_k) = \exp(-G(e^{-y_1},\cdots,e^{-y_j},\cdots, e^{-y_k}))\] \[F(y_1, \cdots, y_j, \cdots, y_k) = \partial F(\cdots)/\partial y_j\] \[F(y_1, \cdots, y_j, \cdots, y_k) = \exp \left(-G(e^{-y_1},\cdots, e^{-y_k})e^{-y_j}G_j(e^{-y_1},\cdots, e^{-y_k})\right)\] - Applying Eulerβs formula and homogeneity conditions in \(F_j(\cdots)\) of the integral of \(Pr(j)\), results in a closed form function: \[Pr(j|C_i) = \frac{e^{V_j}G_j(e^{V_1},\cdots,e^{V_j,\cdots e^{V_k}})}{G(e^{V_1},\cdots,e^{V_j,\cdots e^{V_k}})}\]
\[Pr(j|C_i) = \frac{e^{V_j}G_j(e^{V_1},\cdots,e^{V_j,\cdots e^{V_k}})}{G(e^{V_1},\cdots,e^{V_j,\cdots e^{V_k}})}\]
The general formulation of Choice Probability of a GEV model based on the GEV generating function \[Pr(j) = \frac{y_j G_j(\cdots)}{DG(\cdots)} \text{; D is a degree of homogeneity & }y_j \text{ is argument, }e^{V_j} \text{ above}\]
Expected Maximum Utility of the GEV model generated by the \(G(\cdots)\) function: \[\overline{U} = \frac{1}{D} (\ln(G(\cdots)) + \gamma \text{; }\gamma \text{ is Euler's constant & D is homogeneity degree defined by scale parameter} \] \[Pr(j) = \frac{\partial \overline{U}}{\partial y_j} = \frac{y_j \partial G(\cdots)/\partial y_j}{DG(\cdots)}\]
\[Pr(j|C_i) = \frac{y_j G_j(y_1,\cdots,y_k)}{D G(y_1,\cdots, y_k)}\]
\[Pr(j|C_i) = \frac{e^{V_j} G_j(e^{V_1},\cdots,e^{V_k})}{G(e^{V_1},\cdots,e^{V_k})} \text{; Homogeneous of degree, D=1}\]
\[πΊ(\cdots)=\sum_{π=1}^π½(π^{\mu V_k} )^{1/\mu} \text{; } k=1, 2,\cdots, J \in C_i \text{; an indirect CES structure}\] \[G_j(\cdots) = \frac{\partial \sum_{k=1}^J e^{V_k}}{\partial e^{V_j}} = 1 \text{; considering } \mu = 1\] \[\therefore Pr(j|C_i) = \frac{e^{V_j}}{\sum_k e^{V_k}}\]
\[πΊ(\cdots)=\sum_{π=1}^πΎ\left(\sum_{π\inπ΅_π}π^{π_π π_π}\right)^{1β\mu_l}\]